
CS 458 Notes

June 29, 2017

Contents

1 CS 458 2
1.1 Day 1 (May 31, 2017) . 2

1.1.1 Historical Survey . 2
1.1.2 Von neumann Architecture 3
1.1.3 Integrated Circuits . 4
1.1.4 Digital Logic Review 4

1.2 Day 2 (June 05, 2017) . 6
1.2.1 RAM . 6
1.2.2 Applications of ROM and RAM 7
1.2.3 Timing . 7
1.2.4 Chapter 4 - Register Transfer Language (RTL) 8

1.3 Day 3 (June 07, 2017) . 10
1.3.1 Instruction Set . 10
1.3.2 Instruction Format . 12
1.3.3 Instruction Encodings 13
1.3.4 Addressing modes . 14
1.3.5 Putting it all together 15
1.3.6 Instruction Execution Cycle 17
1.3.7 Chapter 5 - Processor Design (concept into practice) . 17
1.3.8 Review last homework 18

1.4 Day 4 (June 12, 2017) . 18
1.4.1 Exam 1 . 18
1.4.2 Chapter 5 Continued 19

1.5 Day 5 (June 14, 2017) . 21
1.5.1 Assembly to Machine Code 21
1.5.2 Chapter 8: Central Processing Unit (CPU) 23

1.6 Day 6 (June 19, 2017) . 24

1

1.6.1 Chapter 8 Continued 24
1.6.2 Chapter 9 - Pipeline & Vector Processing 26

1.7 Day 7 (June 21, 2017) . 27
1.7.1 Exam II . 27
1.7.2 Parallell Processing (Chapter 9), continued 27
1.7.3 Chapter 10 (Computer Arithmetic) 30

1.8 Day 8 (June 26, 2017) . 33
1.9 Day 9 (June 28, 2017) . 33

1.9.1 Chapter 12 - Memory 33

1 CS 458

1.1 Day 1 (May 31, 2017)

• Class discusses single processor system, not Fifth generation.

• Chapter 1 handout

• Discuss the chip manufacturing process

1.1.1 Historical Survey

1. Fst Gen: Vac Tube Tech (1945-1953)

(a) ENIAC - Electronic Numerical Integration Cmptr

• Made of 1800 vaccum tubes & 1500 relays
• Performed 5000 addition or subtraction per second
• used 1000 bits of core memory
• power usage: 170kw of power (v hot)
• wired up for specific computations.

– It had no programming or operating system.
– The idea of having a "program stored" in memory is at-

tributed to "von neumann" where and the originators of
ENIAC designed the first program-stored computer

2. Second Generation: Transistor Technology (1954-65)

• Made of transistors

– Source, Drain, Ground
– G=0 - open, G=1 - closed

2

• Vaccuum tube replaced by transistor As a result we see computer
becomes smaller, faster, uses less power, & is more reliable (does
not fail as often).

3. Third Generation: Integrated Circuits Technology (1965-1980)

• Also called Microchips or ICs

• Early ICs allowed a dozen transistors on a single chip

• Impact was computers became faster, more reliable, smaller, used
less power.

4. Fourth Generation: VLSI Technology (1980-now)

• The trend to include more transistors on the same microchip
microchip continued over time for making faster, more reliable,
smaller computers that also used less power.

• This is because each gate/circuit has propagation time (delta t).
So placing them closer to one another reduces this delay.

5. Fifth Generation: All non-von neumann parallel archictecture.

• Examples

– Multicore Archictecture
– grid comuting
– and so on

• System made up of many processors, memory modules, and I/O
devices

• Not just a simple bus, but an interconnection network

6. Beyond Fifth Generation: Low power processor design

• power = Ps + Pd

– V = voltage, F = frequency, C = capacitance, I = current
– static power = Ps = V*I
– Dynamic power = Pd = C*V2*F

1.1.2 Von neumann Architecture

• Data line vs control line

• Bus

3

• Parts

– CPU

∗ Control Unit
· Has most/all the control signals (control lines), so it di-
rects all the components to do things like load/store/input/output
device control

∗ ALU (+-*/)

– Input

– Output

– Memory (load/store into CPU)

1.1.3 Integrated Circuits

• (VLSI microchips) Are cut from silicon wafers, circuits arranged in a
grid.

• Classes of ICs (sorted by density)

– SSI (Small Scale Integration): 10-100 transistors on a microchip,
1x1 inch

– MSI (Medium Scale Integration): 100-1000 transistors on a mi-
crochip

– LSI (Large Scale Integration): 1000 to 10000 transistors on a
microchip

– VLSI (Very Large Scale Integration): More than 10000 transistors
on a microchip

– ULSI (Ultra Large Scale Integration): More and more transistors

• Moore’s Law

– Intel founder - Gordon Moore

– Stated number of transistors on a microchip doubles every 18
months.

1.1.4 Digital Logic Review

• Logical gates

– AND F = A ∗B

4

– OR F = A + B

– NOT F = ~A

– NAND F = ‘(A ∗B)

– NOR F = ‘(A + B)

– XOR F = A⊕B

– XNOR F = ‘(A⊕B)

• Circuits

– Decoders (take binary code set one output bit line according to
code)

∗ 2x4 means 2 input, 4 output
∗ n inputs
∗ 2n outputs

– Encoders (opposidet of decoder)

∗ 2n inputs
∗ n outputs
∗ At any time only one of the inputs is one

– Multiplexers

∗ 2n inputs
∗ n select lines
∗ one output

– Demultiplexor

∗ Single input
∗ 2n outputs
∗ n select lines

• Flip-Flops

– A flip-flop stores one bit of information

– Types

∗ D Flip-Flop
· D input
· Q and Q’ outputs
· CP - clock pulse
· Clear and inputs: When P=1 then Q=1, When C=1 Q=0

5

∗ T Flip-Flop
· T Input
· Q and Q’ outputs
· CP - clock pulse

∗ SR Flip-Flop
· S, R inputs
· Q and Q’ outpus
· CP - clock pulse

∗ JK Flip-Flop
· J, K inputs
· Q and Q’ outputs
· CP - clock pulse

• Registers

– A n-bit register stores a n-bitt data.
– Types

1. Register with parallel input & parallel output Loads and
stores all at once-

2. Register with serial input & serial output (shift register)
Moves lower bit to higher bit on every clock pulse

• Memory

– Simply: made up of a decoder that selects the address line from
the address registers (AR), in conjunction with data registers
(DR)

– Types
1. ROM - Read Only Memory
2. RAM - Random Access Memory

1.2 Day 2 (June 05, 2017)

1.2.1 RAM

• Memory Cell A memory cell stores one bit of information.

• Read/write memory

1. RAM Types

6

(a) Dynamic RAM

• Denser (more bits per chip)
• Cheaper
• Slower
• Requires refresh logic for periodic refresh. Has a capacitance

that needs to be charged periodically. Adds to the slowness.
• Used to make main memory

(b) Static RAM

• Less dense
• Expensive
• Faster
• Used for cache memory

1.2.2 Applications of ROM and RAM

• N.B. DRAM uses one transistor, SRAM uses four transistors.

1. ROM

• System software

• Things that won’t change over time

2. RAM

• User program and data is stored here.

• Things that will change over time

1.2.3 Timing

• Memory Access Time (ta) - The time between initiation of a memory
read or write request to the availability of the data

• Memory Cycle Time (tc)

• Memory Recovery Time (tc)

• Memory Bandwidth w=1/tc (number of memory reads or writes per
second)

7

1.2.4 Chapter 4 - Register Transfer Language (RTL)

• RTL is part of HDL (Hardware Description Language)

• Used to describe a hardware block diagram at the register level (level
above logic gate level) (level below system level)

• Hardware Description Languages

– Verilog HDL

– VHDL

• To describe a system at register level

1. Identify its registers and their functions Examples:

– PC (program counter)
– SP (stack pointer)
– et al.

2. Identify micro-operations performed on those registers Example:
PC <- PC+1 (increment)

3. Identify control functions that initiate those micro-operations Ex-
ample: control signal (c): PC <- PC+1 When C=1, then incre-
ment PC

• Register Transfer modes

1. Parallel mode P: A <- B (when control signal P=1, then transfer
content P=1, then transfer content of B into A.) (a.k.a. mov)

2. Serial mode Refer to notes

• Logical shift operations

1. Logical Shift Left Operation L: Shl A When control signal L=1,
then do logical shift left of register A

2. Logical Shift Right Operation R: Shr A When contral signal R=1,
then do logical shift right of register A

3. Rotate left (Circular shift left) operation q: Cil A When control
signal q=1, then rotate left the contents of register A

4. Rotate right (Circular shift right) operation q: Cir A When con-
trol signal q=1, then rotate right contents of register A

8

• Tri-State Device

• Bus Transfer

– Set of lines between registers

– Often uses a common set of lines to connect several registers

– Refer drawing

– Bus <- Register transfer

1. Through Tri-State devices
2. Through multiplexors

– Register <- Bus transfer

1. Through Decoders
2. Through Demultiplexor

• Arithmetic Operations

– Addition P: EA <- A+B (when control signal P=1, then EA=A+B
E is a carry bit register.

• Logical Operations Important: at any time, only one of the control
signals can be one, but all can be zero.

P1: A<-0 P2: A<-not(A) P3: A<-xor(A,B) P4: A<-A*B

• Memory Operations

1. Read operation

– R: MBR<-M or R: MBR<-M[MAR] When read signal R=1,
then transfer contens of memory word into MBR.

– MAR - Memory address register
– MBR - memory buffer register

2. Write operation

– W:M<-MBR or W: M[MAR]<-MBRWhenW=1, then write
into memory word.

• Generation of Control Functions

Example: Increment Program Counter (PC) when (R=0 and T1=1)
or (F=1 and T2=0)

not(R)*T1+F*not(T2): pc <- pc+1

9

• Vonn Neumann Architecture

We talked about the purpose of program counter and how the system
loads the word from memory at pc into an instruction register. And
then the control unit sends out control signals.

1.3 Day 3 (June 07, 2017)

1.3.1 Instruction Set

• Properties

1. Complete Instruction set should be complete such that can write
an assembly to evaluate any function

2. Efficient Instruction set should be efficient such that frequently
needed instructions can be implemeted by one or few instructions

3. Compatible Instruction Set should be complete such that old pro-
grams can still on on new versions of the processor

• Types In order for ISA to be complete it must implement most of the
following instructions. Refer to handout on D2L.

1. Data transfer instructions Move data from and to memory, be-
tween registers

– move
– load
– store

2. Arithemtic Instructions Perform basic arithmetic operations

– Add
– Subtract
– Multiply
– Divide

3. Logical Instructions These instructions perform boolean opera-
tions

– AND
– OR
– NOT
– NAND
– NOR

10

– XOR
4. Program control Instructions These instructions change the con-

trol of flow in the program
– Branch

∗ Unconditional (goto)
∗ Conditional (if-else,loop)

– Subroutine calls
– Flags

∗ Carry
∗ Sign Bit
∗ Overfloppppw
∗ Z-Flag

– Do loops
– if/then/else

5. I/O Instructions
– Input
– Output

6. No-operation
– wait/delay loops
– Debugging

7. Special
– Conversion

∗ translate - translate value based on a table correspon-
dence

∗ Convert - convert contents of a word from one to another
(packed decimal to binary)

• RISC vs CISC

– RISC - Reduced Instruction Set Computer
∗ Only includes frequently needed instructions
∗ Spends less time on decoding

– CISC - Complete Instruction Set Computer
∗ Includes frequently and less-frequently needed instructions
∗ Spends more time on decoding, which means more time to

run every instruction, which means lower throughput

11

1.3.2 Instruction Format

• Fields

1. Op-code Specifies the type of operation

2. Mode It specifies the addressing mode (immediate, direct, indi-
rect, register, PC-register, relative)

3. Operand field(s) Gives data or address of the data in memory or
a register

• Types

1. Three-address instruction format Three fields Ex: Op C,B,A;
C=B Op A Ex: ADD C,B,A; C=B + A

(a) Opcode
(b) Mode
(c) Destination (C)
(d) Source2 (B)
(e) Source1 (A)

2. Two-address format Two fields Ex: Op B,A; B=B Op A Ex: ADD
B,A; B=B + A

(a) Opcode
(b) Mode
(c) Destination/Source2 (B)
(d) Source1 (A)

3. One-address instruction format One field Ex: Op A; AC=AC Op
A Ex: Add A; AC=AC + A N.B. AC is accumulator

(a) Opcode
(b) Mode
(c) Operand (A)

4. Zero-address instruction format No fields Get the top two ele-
ments of the stack and manipulate them, store back onto stack
Ex: Op; SP=SP-1 Op SP Ex: Add; SP=SP-1 + SP N.B. SP is
stack pointer

(a) Opcode

• Stack

12

– Stack pointer (SP)
– SP+/-1 refers to one before the first depending on architecture

• Example X = A+B

– Three-address ADD X,A,B (ADD|Mode|X|A|B)
– Two-address MOV X,A (MOVE|MODE|X|A) ADD X,B
– One-address LOAD A (LOAD|MODE|A) (into AC) ADD B (into

AC) STORE X (from AC)
– Cover zero-address at chapter 8

1.3.3 Instruction Encodings

N.B. N = number of instructions

1. Fixed-length instructions Faster, used in more modern istruction sets

• Vertical Format n = ceiling(log2(N))

Instruction Opcode
Add 00
Sub 01
Mult 10
Div 11

Run through a 2x4 decoder with the outputs the opcode, inputs
the bits.

• Horizontal Format Needs N bits, one bit per instruction

Instruction Opcode
Add 1000
Sub 0100
Mult 0010
Div 0001

2. Variable-length instructions This instruction decoding takes more time,
because it has to decode sequentially.

Instructions Opcode
Add 1
Sub 01
Mult 001
Div 0001

13

1.3.4 Addressing modes

1. Implied mode The register/output is implied by the opcode

AC

Example: INC; AC=AC+1

2. Immediate mode

Opcode Mode Data

Example: Load #5; AC=5

3. Direct mode

Opcode Mode Address

N.B. M[x] means memory contents at address x Example: LOAD ADR;
AC=M[ADR]

4. Indirect Mode

Opcode Mode Indirect Address

Ex: LOAD @ADR; AC=M[M[ADR]] So you get an address from mem-
ory, then go to that address. Ex: LOAD @5; AC=M[M[5]]

5. Register Mode

Opcode Mode Register

Example: LOAD R1; AC=R1

6. Register Indirect Mode

Opcode Mode Register

Example: Load (R2) ; AC=M[R2]

7. Index Register Mode N.B. Your arch needs an index register (RX).
Displacement is added to index register to get memory address.

14

Opcode Mode Displacement

Example: LOAD +DISP(RX); AC=M[RX + DISP] Example: LOAD
+5(RX); Ac=M[RX + 5]

8. Index Register Indirect Mode

Opcode Mode Displacement

Example: LOAD (DISP(RX)); AC=M[M[RX + DISP]] Example:
LOAD (5(RX)); AC=M[M[RX + DISP]]

9. PC Relative Mode Add PC and displacement.

Opcode Mode Displacement

LOAD DISP(PC); AC=M[DISP+PC]

10. PC Relative Indirect Mode Add PC and displacement, get memory
twice.

Opcode Mode Displacement

LOAD (DISP(PC)); AC=M[M[DISP+PC]]

1.3.5 Putting it all together

Example: Design a processor with the following features

• Insructions: ADD, SUB, MULT, DIV

• Addressing modes: register and direct

• Registers: R0, R1, . . . , R7

• Memory size: 1 KBytes

1. Abstract Design Example Identify instruction format to be used (two,
one, zero operand instructions). Sppecify the fields, number bits per
field, opcodes and codes for modes.

(a) One-address instruction (13-bit)

Opcode Mode Operand
2 Bits 1 Bit 10 Bits

15

Fixed length vertical format

Instruction Opcode
ADD 00
SUB 01
MULT 10
DIV 11

Addressing modes Binary code
Register 0
Direct 1

Registers Binary Code
R0 000
R1 001
R2 010
R3 011
R4 100
R5 101
R6 110
R7 111

Memory size: 1K words, 1024 words, 210, 10-bit memory address
Ex: find binary code for following instruction

• ADD R5
Opcode Mode Operand

00 0 0000000101
• ADD 5; AC=M[5] + AC

Opcode Mode Operand
00 1 0000000101

(b) Two-address (24-bit)

Opcode Mode Operand 1 Operand 2
2 bits 2 bits 10 bits 10 bits

• Add R4, R5; R4 = R4 + R5
Opcode Mode Operand 1 Operand 2

00 00 0000000100 0000000101
• Add 4, 5; M[4] = M[4] + M[5]

Opcode Mode Operand 1 Operand 2
00 11 0000000100 0000000101

16

(c) Three-address (35-bit)

Opcode Mode Operand 1 (Dest) Operand 2 (Src 1) Operand 2 (Src 2)
2 bits 3 bits 10 bits 10 bits 10 bits

• Add R3, 5, R1; R3 = m[5] + R1

Opcode Mode Operand 1 (Dest) Operand 2 (Src 1) Operand 2 (Src 2)
00 010 0000000011 0000000101 0000000001

1.3.6 Instruction Execution Cycle

1. Fetch the instruction

2. Decode instruction

3. Calculate effective address(es)

4. Fetch the operand(s) (data)

5. Execute instruction wih data

6. Decide next instruction address (then go to step #1)

1.3.7 Chapter 5 - Processor Design (concept into practice)

Example design
Registers:

• PC (program counter), 12 bits

• A (address register), 12 bits

• IR (instruction register), 16 bits

• TR (temporary data register), 16 bits

• DR (data register), 16 bits

• AC (general purpose & accumulator), 16 bits

• INPR (input register), 8 bits

• OUTR (output register), 8 bits

One address Instruction format

17

1 bit 3 bits 12 bits
15 14,13,12 11 to 0
I opcode address

Addressing modes:

Direct 0
Indirect 1

Size of memory: 4K words, 4 * 1024 words, 22*210, 212 = 12-bit memory
address

Instruction cycle:

1. Fetch cycle

2. Indirect cycle

3. Execute cycle

4. Interrupt cycle (then go to #1)

Questions:

1. What page is this handout on or is it available on D2L (chapter 8)

2. Is this instruction set complete? no, need OR

3. Are we missing some registers? we’ll cover them as we get to them

4. Notation of number next to line with line through it? means N number
lines corresponding to source and dest hookups

1.3.8 Review last homework

Got handout. Refer to it.

1.4 Day 4 (June 12, 2017)

1.4.1 Exam 1

• Monday, June 19, 2017 (one week for now)

• Ch 4,5,6

• Open book & notes

• No computer

18

1.4.2 Chapter 5 Continued

1. Example processor continued

• Brief recap of a 4-bit counter

(a) Instruction encoding

15 14 13 12 11 to 0
I Opcode Address

i. Memory reference instructions
• Fixed-length vertical format

Instruction
And 000
add 001
lda 010
sta 011
bun 100
bsa 101
isz 110
reserved for reg ref and io instructions 111

ii. Register reference instructions
• Fixed length-horizontal format

15
0 1 1 1 b11 . . . b1 b0

Instruction B11 . . . B0 hex
CLA 0 111 1 0000000000 0 7800
CLE 0 111 0 1000000000 0 7400
. . .
HLT 0 111 0 0000000000 1 7001

iii. I/O Instructions
• Fixed length-horizontal format

15
1 111 B11 B10 . . . B0

Instruction B11 . . . B0 Hex
Inp 1 111 1 0000000000 0 f800
Out 1 111 0 1000000000 0 f400
. . .
Iof 1 111 0 0000100000 0 f040

19

(b) Instruction cycle

i. fetch
ii. intdirect
iii. execute
iv. interrupt

i. Examples / continued
• isz & bun (implement do loop)
inp ; ac<- input ctr
stx x ; use memory x as counter
loop:
...
isz x
bun loop

• bsa (for calling subroutines/procedures)
– procedure return address stored just before the proce-

dure body
– last instruction in procedure body should be bun indi-

rect to the stored address (just before procedure body)
• interrupt
– flags

∗ Input flag - FGI
∗ Output flag - FGO
∗ Interrupt flag - R (set by system when FGI or FGO

are set, after the fetch cycle)

– I/o mode of data transfer
A. programmed i/o Input device set FGI=1 to indicate

to processor new data then processor will input data
& set FGI=0
Output device set FGO=1 to indicate to proces-
sor new data then processor will output data & set
FGO=0

B. interrupt i/o
C. Direct Memory Access (DMA) (Chapter 11)

– levels - not covering our example processor
∗ Low priority (interruptable)
∗ High priority (typically not interruptable)

20

– Instructions
A. ION - turn on interrupt (IEN)
B. IOF - turn off interrupt (IEN)

– Example (see handout "interrupt handling process")
ION ; turn on interrupts
LDA 5
Add 6
STA 7
HLT

(c) Deriving Hardware Block Diagram from Hardware Definition Lan-
guage

• See paper notes

1.5 Day 5 (June 14, 2017)

1.5.1 Assembly to Machine Code

• Two passes

1. Convert logical addresses to memory addresses

2. Convert to machine code

• Discussion on binary representation

– Padding numbers to fit width

– radix-compliment (here, 2’s complement), methods:

∗ Take 1’s complement then add 1
∗ Or, Copy the least significant bit to the first 1 (including that

1), then invert the rest

1. Instruction conversions

• LDA 004

– No "I" after the address, so direct mode (0)
– Opcode (from decoder) is 010
– Address in Hex, thus 0000 0000 0000 0100
– Thus machine code is: 0010 0000 0000 0100

• ADD 005

– No "I" (0)

21

– Opcodde is 001
– 005hex in 16-bit binary = 0000 0000 0101
– Thus machine code is : 0001 0000 0000 0101

• STA 006
– No "I" (0)
– Opcode 011
– Address in Hex, thus 0000 0000 0110
– Thus Machine code: 0011 0000 0000 0110

• HLT
– "I" is 0
– Opcode is 111
– B11 thtrough B1 are 0
– B1 is set

2. I/O Operations I/O Modes of Transfer (recap) (refer to 1(b)i)

(a) Programmed I/O
• Least efficient
• Example 1: input data (a): Check input flag FGI and when

FGI=1 then skip next instruction
ILOOP, SKI ; (a)

BUN LOOPI
INP ; input data
STA x ; Store data in memory
HLT ; Done

• Example 2: output data (b): keep checking input flag FGO,
when FGO=0 then skip next instruction
OLOOP, SKO ; (b)

BUN LOOPO
LDA x ; Get data from mem
OUT ; output data
HLT ; done

• Discussion of PIC18 microarchitecture (PIC18F4X2)
• Refer to handouts on D2L

– Chapter 6 Handout #1
– Chapter 6 Handout #2

(b) Interrupt I/O

22

• Conditions for interrupt
T ′0 ∗ T ′1 ∗ T ′2 ∗ IEN ∗ (FGI + FGO) : R← 1

• As interrupt routine is basically a procedure call, one must
save and restore registers

(c) DMA (Ch11)

1.5.2 Chapter 8: Central Processing Unit (CPU)

(Fundamentals)

1. Stack

• Storage device

• Made of many registers or memory (implementation detail)

• Applications

– Handling subroutine and interrupt calls (supports nested
calls)

∗ Save return address
∗ Save registers

• Parts of stack

– Top limit/upper limit/top - other side
– Lower-limit/bottom - one side
– Stack pointer (SP) - points to top of the stack

• Properties

– LIFO - Last Item in, First Item out

• Operations on the stack

– Push: put item on top of stack (and grow the stack)

DR←M [AR], SP← SP+1,Empty← 0,M [SP]← DR, IfSP = upperlimit, thenfull← 1
(1)

– Pop: get item from top of stack (and shrink the stack)

DR←M [SP], SP← SP−1,Full← 0,M [AR]← DR, IfSP = lowerlimit, thenEmpty ← 1
(2)

– Add

M [SP−1]←M [SP−1]+M [SP], SP← SP−1,Full← 0 (3)

23

∗ Zero-address instruction format
∗ Add two topmost items on the stack

– Call
SP← SP + 1,M [SP]← PC,PC← SUBR (4)

∗ N.B. recall one can save registers from caller or in callee
∗ Go over some examples

– Return

• Example stack:

4
(sp) 3 3rd item

2 2nd item
1 1st item
0

• Example stack program:

; X=A+B
PUSH A
PUSH B
ADD
POP X

2. Other topics in processor design

• RISC vs CISC Architectures

– Reduced Instruction Set Computer
– Complex Instruction Set Computer

• Handling procedure calls

1.6 Day 6 (June 19, 2017)

1.6.1 Chapter 8 Continued

1. Register Window Concept

• A fixed set of registers are allocated to each procedure (subrou-
tine). THese registers are distributed into four subgroups as fol-
lows:

(a) High registers. Used for communication with caller procedure
into getting parameters

24

(b) Local registers. Used for local variables
(c) Low registers. Communication with callee procedure for giv-

ing input parameters and getting output results. (therefore,
low becomed the nested procedure’s high registers)

(d) Global registers. Used to hold global variables.

2. Berkeley RISC Uses register windows. SPAC also uses register win-
dows.

(a) 138 registers total

(b) Registers partitioned into 8 register windows (can also be infor-
mally called "register sets")

(c) 10 global registers

(d) 6 High registers

(e) 10 Local registers

(f) 6 Low registers. N.B. High and low overlap, with the last low
register overlapping with the first high register.

(a) About the total

• 8 * 10 = 80 total local
• 80 + 10 = 90 total of local + global
• 138 - 90 = 48 left over
• 48 / 8 = 6 registers left over per register window

3. Some CISC, RISC, and Superscalar processors Ref Table 13.1

• CISC

– IBM 370/168 (1973)
– VAX 11/780 (1978)
– Intel 80486 (1989)

• RISC

– SPARC (1987)
– MIPS R4000 (1991)

• Superscalar

– PowerPC (1993)
– Ultra SPARC (1996)
– MIPS R10000 (1996)

25

1.6.2 Chapter 9 - Pipeline & Vector Processing

1. Parallel Processing

(a) Pipeline processing

(b) Memory Interleaving

(c) Multiple Functional Units

(d) Vector Processing

2. Pipeline Processing This is about decomposing the task into its sub-
tasks and asigning each subtask to a different segment of a pipeline for
execution.

Input -> Buffer0 -> Segment0 -> Buffer1 -> Segment1 -> . . . ->
Bufferk -> Segmentk -> Output

• Concept: Task-time diagram

• k-Segment Pipeline - Made of k segments. Input one side, output
the other.

• Pipeline clock cycle

Input-> S1 S2 . . . Sk ->Output
t1 t2 tk

– z = max(t1, t2, ..., tk)

– frequency: f = 1
z

• Types

(a) Data-Stream Pipelining
(b) Instruction Stream Pipelining

(a) Data Stream pipelining N.B. In general, each pipeline segment
may not take equal time.
Example: Ci = Ai−Bi for i = 1, 2, 3, 4 is the same as Ai + B̄i + 1

i. Pipeline hardware block diagram (ref image)
ii. Task-time diagram (ref image)
iii. Pipeline execution time Tp = Pipeline execution time (Time

to get first outptu) + (time to get remaining output) Tp =
3 · t + (4− 1) · t = 6 · t

Compare to non-pipelining. Each operation runs in sequence. TN

= Non-pipeline time (= 3 · t)(4) = 12 · t

26

i. Generalization
• Pipeline
– k-segment pipeline
– Pipeline time Tp = k · t + (n− 1) · k
– n = number of tasks
– First product is the time to get he first output
– Second product is time to get remaining outputs

• Non-pipelining
– TN = (k · t) · n

ii. Performance Metrics
A. Throughput = number of tasks

time Pipeline throughput w =
n
Tp

= n
k·t+(n−1)·t

Take the limit of w as it approaches infinity. Becomes
zero.

B. Speedup = serial time
parallel time = non-pipeline time

pipeline time Pipeline speedup

Sp = TN
Tp

= (k·t)·n
k·t+(n−1)·t

Take the limit of Sp approaches infitity, becomes k. So
more segments becomes faster.

(b) Instruction Stream Pipelining

• Recall execution cycle.
• Example: Ideal pipelining
LDA x
ADD y
STA z
HLT

1.7 Day 7 (June 21, 2017)

1.7.1 Exam II

• Wednesday, June 28

• Chapters 8,9,10

• Open books & open notes

1.7.2 Parallell Processing (Chapter 9), continued

Refer to parallel processing

27

1. Pipelining, continued

• If you have frequent branches, pipelining doesn’t work (as you
have to empty the pipeline)

(a) Pipeline Anomalies

i. Branch Instructions
ii. Instruction dependencies
iii. Resource conflicts
iv. Segments with unequal execution time

(b) RISC Architecture For part (C) redefine JUMP instruction such
that it does not take effect until the following instruction.

Address (A) Normal Branch (B) Delayed Jump (C) Optimized Delayed Jump
Pipeline Emptied Pipeline not emptied Pipeline not emptied

100 LOAD X, A LOAD X, A LOAD X, A
101 ADD 1, A ADD 1, A JUMP 105
102 JUMP 105 JUMP 106 ADD 1, A
103 ADD A, B NOP ADD A, B
104 SUB C, B ADD A, B SUB C, B
105 STORE Z SUB C, B STORE A, Z
106 STORE A, Z

2. Multiple Functional Units Example: x = a+b
c−d

• break down the operations into ones that can be parallelized

3. Memory Interleaving Two approaches:

(a) High-order memory interleaving

(b) Low-order memory interleaving

(a) High-order memory interleaving

• Memory is broken up into modules of sequential memory.
• M0 (highest address: m-1), M1 (highest address: 2m-1), M2

(highest address: mn-1)
• For high-reliability applications - if one module has defective

words, just use different modules.
• Example: (ref image)

28

(b) Low-order memory interleaving

• For high performance computing
• Example: (ref image)

4. Vector Processing Uses a SIMD Machine (Single Instruction Multiple
Data Stream)

(a) VA (Vector Add Instruction) C(I)← A(I) + B(I)|I = 1, 2, ..., n

(b) Vector Dot Product C(1)←
∑n

I=1A(I) ·B(I)

(c) Vector Compare Compare A(II) with B(I) and set C(I) according
for I=1,2,. . . ,n

(d) V AND (Vector AND) C(I) = A(I) ∧B(I)|I = 1, 2, ..., n

(e) V MAX (Vector Max) C(I) = max[A(I), B(I)]|I = 1, 2, ..., n

(f) Vector Merge C ← [A(1), B(1), A(2), B(2), ..., A(n), B(n)]

(g) Vector search for largest or smallest element

5. Parallel Architecture Categorization (Refer to image)

(a) SISD (Single Instruction Single Data Stream)

(b) SIMD (Single Instruction Multiple Data Stream)

• Multiple ALUs

(c) MISD (Multiple Instruction Single Data Stream)

• Ignore

(d) MIMD (Multiple Instruction Multiple Data Stream)

• Multiple control units, multiple ALUs

6. Parallel Architecture recap

• ref image

• T = running time of a program = compute time + communication
time

• Therefore, communication time can negate the benefit of the par-
allelizedd tasks

29

1.7.3 Chapter 10 (Computer Arithmetic)

1. Unsigned Numbers

(a) Addition of Unsigned Numbers
• Flowchart EA← A + B, V ← E (V=overflow,E=carry out)
• Example:
A = 5 (0101) --> 0101
B = 12 (1100) --> +1100

1/0001
^ ^^^^

E -/ \\\\-- Sum
V=E, V=1

(b) Substraction of Unsigned Numbers
• HDL

– EA← A + B̄ + 1

– (If E=0, A<B, else A>=B)
– Ē : A← Ā + 1 (Negate A)

• Example
A=5 (0101) -------> 0101
B=2 (0010) --2’s--> +1110

1/0011

2. Signed Numbers

(a) Representations
i. Signed magnitude (number with sign bit)

• N= +5 = (101) = 0101 (leading bit is sign)
• N= -5 = (101) = 1101 (leading bit is sign)

ii. 1’s Complement (nonnegative left as is, with 0 sign bit, neg-
ative is 1’s complement with sign bit set)

• N= +5 = (101) = 0101 (leading bit is sign)
• N= -5 = (101) = 1’s comp = 1010 (leading bit is sign)

iii. 2’s complement
• N= +5 = (101) = 0101 (leading bit is sign)
• N= -5 = (101) = 1011

(b) Addition and Subtraction of Signed Magnitude Numbers
• (ref p 347)

30

• Example:
+3+(-5)=-2
A=+3
B=-5
AC= 0 011
AS A

BR= 1 101
BS B

A=(011) -------> 011
B=(101) --2’s--> +011

0/110
E=0 -- As E is zero, compliment A and its sign bit
AS=not(AS)=not(0)=1
A=010
AC=1010

(c) Addition and Subtraction of signed 2’s compelement numbers

• Add
i. AC ← AC + BR

ii. V ← Cs ⊕ Cr

• Subtract
i. AC ← AC + B̄R + 1

ii. V ← Cs ⊕ Cr

• Add example
C_s --\/-- C_r

+3+(-5)=? vv
AC=+3=(0011) --> 0011
BR=-5=(1011) --> +1011

0/1110
V= C_s XOR C_r = 0 XOR 0 = 0

(d) Multiplication of signed magnitude numbers

• (ref p 351)
• Example:
(+3)x(-5)=-15
X_s -\ ///-- X

v vvv
BR=+3=0 011
QR=-5=1 101

31

AC= 0=0 000
SC= 3=_ 011

3. Floating Point Numbers

• N = m× 2e

• m is mantissa (typically respresented in signed magnitude)

• e is exponent (unsigned number)

• Conversion of number (N) into floating point format

(a) Convert N into binary
(b) Normalize N
(c) Represent N in IEEE Single-precision (32-bit) or IEEE

Double-precision (64-bit)

• Biased representation. If signed numbers are in the range of -N to
+M, then add a bias (+N) to each number to convert the range from
0 to N+M unsigned numbers. (Basically, instead of using a signed
exponent, we map the negative-most value to 0, and increment
up, in an unsigned fashion)

• IEEE Single Precision 32-bit format "Hidden 1", leading 1 in
normalized mantissa

1 8 23
Sign Bit E F

• Example: Convert N= +18.375 to floating point format

(a) Convert N to binary
18=16+2

= 2^4+2^1
= (10010)

0.375 = 0.25 + 0.125
= 1/4 + 1/8
= 2^-2 + 2^-3
= (0.011)

18.375 = (10010.001)
(b) Normalize N N = +1.0010011x24

(c) Represent as IEEE Single Precision Floating Point

32

E = bias + e
= 127 + 4
= 128 + 2 + 1
= 2^7 + 2^1 + 2^0
= (10000011)

S E F
0 10000011 00100110000000000000000

1.8 Day 8 (June 26, 2017)

1.9 Day 9 (June 28, 2017)

1.9.1 Chapter 12 - Memory

The Two problems

1. Memory is not fast enough

2. There is not enough memory

1. Definitions

(a) Memory Access Time - The time takes to do a memory read or
write

(b) Memory cycle time - memory access time plus memory recovery
time

(c) Memory recovery time - time between access times

(d) Memory bandwidth (w) - 1
memory cycle time = Number of reads or

writes per second

(e) Locality Reference - memory addresses generated by a program
tend to be confined within small regions of address space, because
of do-loops in programs.
Example: Consider a program of three components, three do-
loops. You may not need the other components in memory while
the other one runs, vice versa.

(f) Memory Hierarchy

i. Secondary Memory (disk,ssd,etc)
ii. Main memory
iii. Cache

33

Comparison:

Cache main Memory Disk
Speed Fastest (1 ns) Medium (10 ns) Slowest (1 ms)
Size Smallest (1 K) Medium (1 M - 1 G) Largest (1 G - 1 T)
Cost Most expensive Medium Cheapest

(g) Hit Ratio h = Number of hits to cache
Number of hits to cache+Number of misses to cache

Consider: ta = h · tc + (1 − h) · (tc + tm), where ta is average
memory access time, tc is memory cache access time, h is hit
ratio for cache, and tm is main memory access time
Same as: ta = tc + (1− h) · tm
Example: tc = 26ns, tm = 312ns, h = .90

ta = 26 + (1− 0.9) · 312 = 57.2ns

2. Multi-level memory hierarchy

• si = size at level i
• ti = access time at level i
• hi = hit ratio at level i - N.B. is 1 at the highest tier of memory

(such as disk), so it’s often omitted in equations/examples
• s1 < s2 < s3... < si < si+1 < ... < sn

• t1 < t2 < t3... < ti < ti+1 < ... < tn

• Effective memory access time at level i = emati = ti + (1− hi) +
emati+1

CPU s_1, h_1, t_1
|

Cache Level 1 s_2, h_2, t_2
| .

Cache level 2 .
| .

Cache level 3 s_i, h_i, t_i
|

Main memory s_i+1, h_i+1, t_i+1
|

Disk s_n, h_n, t_n

3. Cache-write policy

34

(a) Write through policy: update main memory, copy data when the
cache is updated

(b) Copy back: Update main memory, copy data at the time of cache
miss

4. Cache organization

(a) Associative memory

• Argument register (4 bit)
• Key register (a.k.a. mask register) (4 bit)
• Memory
• Match register (1 bit per word of memory)

Put data in argument register. Put bitmask in key register. Match
register is updated to reflect which words meet the AND of Ar-
gument and Key registers as equal.
Because the matches are done in parallel, logic is necessary for ev-
ery memory word to facilitate this. Which increases the footprint
and cost of associative memory.

(b) Direct mapping Ref handout.
Memory access time ∼=

√
memory size

• CPU address register (two parts, few bits called tag starting
at MSB, index is the rest of the register)

• Cache is a series of words with extra bits for tag. Address
corresponds to Index.

• Entire address register refers to an address in memory. Index
refers to just the cache address. Tag is used to verify the
index is for the same tag.

(a) Set-associative mapping (extension of #2)
Example:
Set size K=2. Has two "sets", that is, two sections of cache, with
tag and data in each word, and address referring to an index. So
in effect, it’s just Direct Mapping with multiple mappings (which
presumably has circuitry to prevent duplicate data)

35

	CS 458
	Day 1 (May 31, 2017)
	Historical Survey
	Von neumann Architecture
	Integrated Circuits
	Digital Logic Review

	Day 2 (June 05, 2017)
	RAM
	Applications of ROM and RAM
	Timing
	Chapter 4 - Register Transfer Language (RTL)

	Day 3 (June 07, 2017)
	Instruction Set
	Instruction Format
	Instruction Encodings
	Addressing modes
	Putting it all together
	Instruction Execution Cycle
	Chapter 5 - Processor Design (concept into practice)
	Review last homework

	Day 4 (June 12, 2017)
	Exam 1
	Chapter 5 Continued

	Day 5 (June 14, 2017)
	Assembly to Machine Code
	Chapter 8: Central Processing Unit (CPU)

	Day 6 (June 19, 2017)
	Chapter 8 Continued
	Chapter 9 - Pipeline & Vector Processing

	Day 7 (June 21, 2017)
	Exam II
	Parallell Processing (Chapter 9), continued
	Chapter 10 (Computer Arithmetic)

	Day 8 (June 26, 2017)
	Day 9 (June 28, 2017)
	Chapter 12 - Memory

